Diurnal rhythmicity in intestinal SGLT-1 function, V(max), and mRNA expression topography.

نویسندگان

  • A Tavakkolizadeh
  • U V Berger
  • K R Shen
  • L L Levitsky
  • M J Zinner
  • M A Hediger
  • S W Ashley
  • E E Whang
  • D B Rhoads
چکیده

Mechanisms underlying the circadian rhythmicity in intestinal sugar absorption remain unclear. To test whether this rhythmicity is caused by changes in Na(+)-glucose cotransporter 1 (SGLT-1) function, we measured phloridzin-inhibitable sugar fluxes as an index of SGLT-1 activity. Jejunum obtained from rats killed at 6-h intervals during a 12-h light-dark cycle (CT0 is circadian time 0 h, time of light onset) were mounted in Ussing chambers, and 3-O-methylglucose (3-OMG) fluxes were calculated before and after addition of phloridzin. 3-OMG-induced change in short-circuit current and absorptive flux were significantly greater at CT9 than at CT3. This increase was phloridzin inhibitable. Kinetic studies indicated a significant increase in SGLT-1 maximal velocity (V(max)) at CT9. Food intake between CT3 and CT9 was <10% of the daily total, indicating that the increased SGLT-1 activity was anticipatory. Diurnicity of SGLT-1 mRNA was confirmed by Northern blotting. Expression topography analyzed by in situ hybridization revealed more intense labeling along the entire villus axis at CT9 and CT15 compared with CT3 and CT21. We conclude that diurnicity in intestinal sugar absorption is caused by periodicity in SGLT-1 V(max).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diurnal rhythm of H+-peptide cotransporter in rat small intestine.

In mammals, most physiological, biochemical, and behavioral processes show a circadian rhythm. In the present study, we examined the diurnal rhythm of the H+-peptide cotransporter (PEPT1), which transports small peptides and peptide-like drugs in the small intestine and kidney, using rats maintained in a 12-h photoperiod with free access to chow. The transport of [14C]glycylsarcosine (Gly-Sar),...

متن کامل

Chronic social stress in pigs impairs intestinal barrier and nutrient transporter function, and alters neuro-immune mediator and receptor expression

Psychosocial stress is a major factor driving gastrointestinal (GI) pathophysiology and disease susceptibility in humans and animals. The mechanisms governing susceptibility to stress-induced GI disease remain poorly understood. In the present study, we investigated the influence of chronic social stress (CSS) in pigs, induced by 7 d of chronic mixing/crowding stress, on intestinal barrier and ...

متن کامل

Restricted feeding phase shifts clock gene and sodium glucose cotransporter 1 (SGLT1) expression in rats.

The intestine exhibits striking diurnal rhythmicity in glucose uptake, mediated by the sodium glucose cotransporter (SGLT1); however, regulatory pathways for these rhythms remain incompletely characterized. We hypothesized that SGLT1 rhythmicity is linked to the circadian clock. To investigate this, we examined rhythmicity of Sglt1 and individual clock genes in rats that consumed food ad libitu...

متن کامل

Ontogeny of brush border carbohydrate digestion and uptake in the chick.

Ingestion of carbohydrates from the small intestine is the major route of energy supply in animals. In mammals these functions develop both pre- and postnatally and are coordinated for the sucking period. In birds, the physiological requirements are different and hatchlings ingest diets rich in complex carbohydrates soon after hatching. The present study examined the ontogeny of intestinal carb...

متن کامل

Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis.

Fructose transporter (GLUT-5) expression is low in mid-weaning rat small intestine, increases normally after weaning is completed, and can be precociously induced by premature consumption of a high-fructose (HF) diet. In this study, an in vivo perfusion model was used to determine the mechanisms regulating this substrate-induced reprogramming of GLUT-5 development. HF (100 mM) but not high-gluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Gastrointestinal and liver physiology

دوره 280 2  شماره 

صفحات  -

تاریخ انتشار 2001